Search results for "Finite element"

showing 10 items of 892 documents

A Domain Imbedding Method with Distributed Lagrange Multipliers for Acoustic Scattering Problems

2003

The numerical computation of acoustic scattering by bounded twodimensional obstacles is considered. A domain imbedding method with Lagrange multipliers is introduced for the solution of the Helmholtz equation with a second-order absorbing boundary condition. Distributed Lagrange multipliers are used to enforce the Dirichlet boundary condition on the scatterer. The saddle-point problem arising from the conforming finite element discretization is iteratively solved by the GMRES method with a block triangular preconditioner. Numerical experiments are performed with a disc and a semi-open cavity as scatterers.

symbols.namesakeConstraint algorithmHelmholtz equationDiscretizationPreconditionerLagrange multiplierDirichlet boundary conditionMathematical analysissymbolsBoundary value problemFinite element methodMathematics
researchProduct

Design of an FBG based-on sensor device for large displacement deformation

2013

This article deals with the modeling of a strain-displacement transducer conceived for extending the FBG measurement range. The intrinsic fragility of the optical fiber limits their application to cases characterized by relatively small deformations. To extend the employ to the large displacement field (i.e. morphing applications), a dedicated device was conceived, constituted by a circular ring connected to the structure and laterally integrated with a FBG sensor. This device was mathematically modeled minimizing the potential energy this way arriving at a description of the displacement and deformation field along the curvilinear abscissa. The theoretical predictions were then validated t…

Optical fiberComputer scienceAcousticsAbscissaDeformation (meteorology)Displacement (vector)Finite element methodlaw.inventionsymbols.namesakeMorphingTransducerlawDisplacement fieldsymbolsElectronic engineering2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC)
researchProduct

Simplified equivalent finite element modelling of concrete-filled steel tubular K-joints with and without studs

2022

Concrete Filled Steel Tubular (CFST) K-joints employed for truss structures gained high interest in the last years due to their widespread use in engineering practice. The overall performances of these joints can be efficiently improved by using steel studs welded in the inner surface of the steel chord filled with the concrete, avoiding punching shear failure, and improving the overall strength and ductility. However, a reliable prediction of the structural behavior of the joints is outmost of importance for the assessment of the capacity of new and existing structures, and there are no standardized design methods nowadays. In this paper, the structural performances of CFST K-joints with a…

Settore ICAR/09 - Tecnica Delle CostruzioniSimplified equivalent modellingK-jointsSteel studsConcrete filled steel tubes (CFST); Finite element modelling (FEM); K-joints; Simplified equivalent modelling; Steel studsConcrete filled steel tubes (CFST) Finite element modelling (FEM) K-joints Simplified equivalent modelling Steel studsConcrete filled steel tubes (CFST)Civil and Structural EngineeringFinite element modelling (FEM)
researchProduct

Defining a reduced volume zone for the simulation of burst test on a composite pressure vessels

2018

International audience; A Fibre-Break Model (FBM) developed at Mines ParisTech can predict the burst pressure of high pressure composite vessels. This model uses random values of fibre strength at each Gauss point of the considered vessels meshed with finite element (FE). However, previous studies has determined the optimum FEs to be used on real-scale structures (0.1 mm x 0.1 mm x 8 mm). A simple calculation shows that, on a real-scale pressure vessel, this induces a gigantic number of FEs, hence the extensive computation time. To overcome this problem, the integral range method is proposed to find a reduced volume zone of the vessels, on which an equivalent calculation can be made and giv…

Composite structuresFinite Element MethodPressure vessels[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]Reduced Volume Method[SPI.MECA.MEMA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]
researchProduct

FINITE ELEMENT RESOLUTION OF CONVECTION-DIFFUSION EQUATIONS WITH INTERIOR AND BOUNDARY LAYERS

1996

We present a new algorithm for the resolution of both interior and boundary layers present in the convection-diffusion equation in laminar regimes, based on the formulation of a family of polynomial-exponential elements. We have carried out an adaptation of the standard variational methods (finite element method and spectral element method), obtaining an algorithm which supplies non-oscillatory and accurate solutions. The algorithm consists of generating a coupled grid of polynomial standard elements and polynomial-exponential elements. The latter are able to represent the high gradients of the solution, while the standard elements represent the solution in the areas of smooth variation.

PolynomialApplied MathematicsMechanical EngineeringMathematical analysisSpectral element methodComputational MechanicsBoundary (topology)Laminar flowFinite element methodComputer Science ApplicationsMechanics of MaterialsMesh generationConvection–diffusion equationExtended finite element methodMathematicsInternational Journal for Numerical Methods in Fluids
researchProduct

Intraoperative neural electrode for continuous monitoring of nerve function

2009

Nerve damage is still a major concern in all types of surgery and may result in permanent nerve injury. Real time nerve monitoring can reduce the risk of nerve lesions by continuous surveillance of nerve integrity. A stable proximal stimulation of the nerve and recording at the effector organ is essential and the electrodes should not significantly influence the surgical intervention.

medicine.medical_specialtybusiness.industryAnesthesiaContinuous monitoringmedicineStimulationNerve injurymedicine.symptomNerve functionbusinessSurgeryFinite element simulation
researchProduct

Global-Local model for guided wave scattering problems with application to defect characterization in built-up composite structures

2020

Abstract Predicting scattering of elastic guided waves in multi-layered solid plates with geometrical and/or material discontinuities is of great interest to many fields, including ultrasonic-based Non-Destructive Testing (NDT) and health monitoring of critical structural components (SHM). The problem is complicated by the multimode and dispersive behaviour of the guided waves. This paper describes a unified Global-Local (GL) approach that is computationally efficient in cases that can be very complex in terms of geometry and/or material properties. One example of this is a composite built-up structure. The proposed GL procedure discretizes the “local” region with the scattering discontinui…

AcousticsNon-destructive testingClassification of discontinuitiesScatteringNondestructive testingGlobal-Local methodGeneral Materials ScienceGuided elastic wavePhysicsStructural health monitoringGuided wave testingScatteringbusiness.industryApplied MathematicsMechanical EngineeringCondensed Matter PhysicsFinite element methodDiscontinuity (linguistics)Mechanics of MaterialsComposite structureModeling and SimulationReflection (physics)Ultrasonic sensorSettore ICAR/08 - Scienza Delle CostruzionibusinessSemi-analytical finite element methodInternational Journal of Solids and Structures
researchProduct

Shape optimization of elasto-plastic bodies under plane strains: Sensitivity analysis and numerical implementation

1992

Optimal shape design problems for an elastic body made from physically nonlinear material are presented. Sensitivity analysis is done by differentiating the discrete equations of equilibrium. Numerical examples are included.

Mathematical optimizationControl and OptimizationPlane (geometry)Structural mechanicsMathematical analysisGeneral EngineeringOptimal controlComputer Graphics and Computer-Aided DesignFinite element methodComputer Science ApplicationsNonlinear systemControl and Systems EngineeringShape optimizationSensitivity (control systems)SoftwareMathematicsPlane stressStructural Optimization
researchProduct

A new design problem in the formulation of a special moment resisting connection device for preventing local buckling

2021

In the present paper an improved formulation devoted to the optimal design problem of a special moment resisting connection device for steel frames is proposed. This innovative device is called a Limited Resistance Plastic Device (LRPD) and it has been recently proposed and patented by some of the authors. It is thought to be preferably located at the extremes of the beam, connecting the beam end cross section with the relevant column. The typical device is a steel element characterized by symmetry with respect to three orthogonal barycentric planes and constituted by a sequence of three portions with abrupt cross section changes. The main novelty of the present proposal is related to the d…

Fluid Flow and Transfer ProcessesTechnologyQH301-705.5Finite element modelsTPhysicsQC1-999Process Chemistry and TechnologyGeneral EngineeringSteel designEngineering (General). Civil engineering (General)Computer Science Applicationsmoment resisting connections; full plastic deformations; minimum volume design; finite element models; steel designChemistryFull plastic deformationsMoment resisting connectionsMinimum volume designGeneral Materials ScienceTA1-2040Biology (General)QD1-999Instrumentation
researchProduct

Modeling the pelvic region for non-invasive pelvic intraoperative neuromonitoring

2016

Abstract Finite element analysis (FEA) of electric current distribution in the pelvis minor may help to assess the usability of non-invasive surface stimulation for continuous pelvic intraoperative neuromonitoring. FEA requires generation of quality volumetric tetrahedral mesh geometry. This study proposes the generation of a suitable mesh based on MRI data. The resulting volumetric mesh models the autonomous nerve structures at risk during total mesorectal excision. The model also contains the bone, cartilage, fat, skin, muscle tissues of the pelvic region, and a set of electrodes for surface stimulation. The model is ready for finite element analysis of the discrete Maxwell’s equations.

medicine.medical_specialtybusiness.industryfinite element methodlcsh:RNon invasiveBiomedical Engineeringlcsh:Medicinepelvic intraoperative neurophysiological monitoring03 medical and health sciences0302 clinical medicinemedicine.anatomical_structure030220 oncology & carcinogenesismedicine030211 gastroenterology & hepatologyelectric field modelingRadiologybusinessPelvisCurrent Directions in Biomedical Engineering
researchProduct